Largest Liquid Hydrogen Dewar Tank (Ever)

Isotherm Energy has been awarded a subcontract to provide support for development of the largest hydrogen dewar tank in history at the NASA Kennedy Space Center (KSC). As previously reported by NASA, the new dewar will hold well over one million gallons of liquid hydrogen and is 50% larger than the current record holder that supported space shuttle launches for 30 years (see below).

Credits: NASA/Kim Shiflett

Credits: NASA/Kim Shiflett

A primary focus of Isotherm Energy’s support is the analysis, design and integration of a new technology that eliminates hydrogen loss during storage. Shawn Quinn, assistant program manager of NASA KSC Ground Systems Development and Operations (GSDO), explained how the dewar and its unique capabilities will support the new Space Launch System[1], “…GSDO will fill the rocket's core stage and interim cryogenic upper stage with hundreds of thousands of gallons of liquid hydrogen. An important feature of the new zero boil-off technology is the potential to reduce long-term energy costs and liquid hydrogen commodity costs."

This key capability will build upon previous research demonstrations done by NASA to investigate an integrated system that can provide liquefaction, propellant densification, and zero boil-off. “The goal would be to integrate the unit's heat exchange system into the new tank, saving GSDO money by eliminating the loss of hydrogen”, according to Bill Notardonato, principal investigator for the 33,000 gallon demonstration unit (shown below)[2]. “By accomplishing zero boil-off of liquid hydrogen, we could save one dollar in hydrogen for every 20 cents spent on electricity to keep it cooled.”

Photo credit: NASA/Cory Huston

Photo credit: NASA/Cory Huston

The successful design and operation of a liquid hydrogen storage system at this scale with zero boil-off, liquefaction and densification capabilities has far reaching implications even beyond the space program. For example, Isotherm Energy has developed a hydrogen energy storage architecture and associated system development software for renewable power sources (among other applications). The demonstrated ability to economically eliminate hydrogen losses for such a system – not to mention liquefy gaseous hydrogen and subcool the resulting liquid – would be a significant game changer.

[1] “Ultra-Cold Storage – Liquid Hydrogen May Be Fuel of the Future”, Amanda Griffin and Linda Herridge, NASA KSC, Dec 14, 2016.

[2] Ibid.


Matt Moran is a Managing Partner at Isotherm Energy and has been developing power, thermal, and fluid systems since 1982.  He has a passion for the business and engineering of technology development and its integration into commercial products. Matt was the Sector Manager for Energy and Materials at NASA Glenn Research Center where he worked for over 30 years.  He has also co-founded or been a key contributor to five technology based start-ups; and provided R&D and engineering consulting to many industrial, government and research organizations.  More about Matt here